
 1 

The Myopia of Imperfect Climate Models: 

The Case of UKCP09 
 

 

Roman Frigg, Leonard A. Smith and David A. Stainforth1 

 

Forthcoming in Philosophy of Science 

 

 

Abstract 
 

The United Kingdom Climate Impacts Programme’s UKCP09 project makes high 

resolution forecasts of climate during the 21st century using state of the art global 

climate models. The aim of this paper is to introduce and analyse the methodology 

used and then urge some caution. Given the acknowledged systematic errors in all 

current climate models, treating model outputs as decision relevant probabilistic 

forecasts can be seriously misleading. This casts doubt on our ability, today, to make 

trustworthy, high resolution predictions out to the end of this century.  

 

 

1. Introduction 

 

There is now a widespread consensus that global warming is real and in large part due 

to human activities.2 But knowing that the climate is getting warmer on average is of 

limited use in designing detailed adaptation strategies.3 The impact of climate change 

on humans  occurs at a local scale, and so ideally we would like to know what 

changes we have to expect in our immediate environment, and  reliable answers 

                                                
1 To contact the authors write to r.p.frigg@lse.ac.uk, lenny@maths.ox.ac.uk, d.a.stainforth@lse.ac.uk.  
2 The existence of a wide-spread a consensus is documented in (Oreskes, 2007); the evidence for the 

warming being anthropogenic is documented in the last IPCC Report. Throughout ‘IPCC’ refers to 

(Solomon, et al., 2007).  
3 It may well be enough for mitigation: knowing even roughly what is likely to happen may be reason 

enough not to go there. 

mailto:r.p.frigg@lse.ac.uk
mailto:lenny@maths.ox.ac.uk
mailto:d.a.stainforth@lse.ac.uk
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would greatly aid decision  makers (Oreskes, et al., 2010, Sexton, et al., 2012, Smith 

and Stern, 2011, Tang and Dessai, 2012).  

 

The United Kingdom Climate Impacts Program’s UKCP09 project aims to answer 

exactly such questions by making high resolution forecasts of 21st century climate.4 It 

generates its predictions using state of the art global climate models. The IPCC has 

confidence that these models have some skill at continental scales and above. This 

leaves open the question whether decision relevant high resolution predictions could 

be constructed with today’s models. 

 

The aim of this paper is to introduce and analyse the methodology used by UKCP09 

and then urge some caution. Given the acknowledged systematic errors in all current 

climate models, treating model outputs as the basis for decision relevant probabilistic 

forecasts can be seriously misleading (Stainforth, et al., 2007). This casts doubt on our 

ability, today, to make trustworthy,5 high resolution predictions out to the end of this 

century.  

 

Herein we introduce the aims of UKCP09 (Section 2), outline the method used to 

generate predictions (Section 3), discuss the project’s handling of structural model 

error (Section 4), argue that crucial assumptions are untenable (Section 5), and then 

draw some conclusions (Section 6).   

 

 

                                                
4 ‘UKCP’ stands for ‘United Kingdom Climate Projections’ and ‘09’ indicates that it was launched for 

public use in 2009. UKCP09 is documented in the Briefing Report (Jenkins, et al., 2009), the Science 

Report (Murphy, et al., 2010) and two recent papers, (Sexton, et al., 2012) and (Sexton and Murphy, 

2012). The full set of predictions is at http://ukclimateprojections.defra.gov.uk/.  
5 In this paper we use the word ‘trustworthy’ to denote probability forecasts which one might rationally 

employ for decision making purposes using probability theory in the standard way. Such probability 

forecasts are expected to be robust and reliable, the kind a good Bayesian would make. We wish to 

avoid the kind of analysis that inspired Rubin’s remark that ‘a good Bayesian does better than a non-

Bayesian, but a bad Bayesian gets clobbered’ (cited in Good, 2009, 139). There may be many 

justifiable and interesting scientific reasons to construct probability forecasts, our criticism of them in 

this paper  is only in regard to their direct use in decision support (as, for instance,  illustrated in the 

worked examples of UKCP09).  

http://ukclimateprojections.defra.gov.uk/
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2. UKCP:  Aims and Results  
 

The declared aim of UKCP09 is to provide decision-relevant forecasts on which 

industry and policy makers can base their future plans:  

 
‘To adapt effectively, planners and decision-makers need as much good information as possible 

on how climate will evolve, and supplying this is the aim of […] UKCP09. They are one part of 

a UK government programme of work to put in place a new statutory framework on, and 

provide practical support for, adaptation.  

 

The projections have been designed as input to the difficult choices that planners and other 

decision-makers will need to make, in sectors such as transport, healthcare, water-resources and 

coastal defences, to ensure that UK is adapting well to the changes in climate that have already 

begun and are likely to grow in future.’ (Jenkins, et al., 2009, 9) 

 

In a system as complex as the world’s climate, it is absurd to produce point forecasts 

(i.e. forecasts saying that a particular event will happen at a particular time with 

certainty). UKCP09 produces what they dub Bayesian probability forecasts, which 

 
‘assign a probability to different possible climate outcomes recognising that […] giving a range 

of possible climate change outcomes is better, and can help with robust adaptation decisions, but 

would be of limited use if we could not say which outcomes are more or less likely than 

others.’(ibid., 23)  

 

The challenges many decision makers have to address arise at a local level: flood 

barriers have to be built in a particular location and to a given height, and so on. For 

this reason, local user-relevant information about the impacts of climate change is the 

most useful, assuming of course that it is not mis-informative (Smith and Stern, 

2011).   

 

UKCP09 strives to meet the demand for decision-relevant information at the local 

level by producing highly specific information (ibid., 6-7). Probabilities are given for 

events on a 25km grid. Forecasts are made for finely defined specific events such as 

changes in the temperature of the warmest day of a summer and the precipitation of 

the wettest day of a winter. It is predicted, for instance, that under a medium emission 
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scenario the probability for a 20-30% reduction in summer mean precipitation in 

central London in 2080 is 0.5 (ibid., 36). 

 

 

3. The Architecture of UKCP09  
 

These predictions are generated with a method involving both global climate models 

(GCM’s) and elaborate statistical techniques. In this section we outline the method, in 

five parts, with the aim of identifying key assumptions and making its architecture 

visible.6 

 

Part 1 – Modelling.  The cornerstone of UKCP09 is HadCM3, a GCM developed at 

the Hadley Centre. The model consists of two coupled modules, one representing the 

earth’s atmosphere (including land surface processes and surface–atmosphere 

exchanges) and one representing the oceans. Our best descriptions of these fluids 

come from nonlinear partial differential equations (PDE’s), which define the 

evolution of continuous fields representing the atmosphere or ocean. It is neither 

possible to integrate PDE’s exactly, nor to measure the continuous fields required to 

initialise them. Instead they are discretised onto a grid in space and in time. Today’s 

computational constraints force climate models to use a relatively course grid; those 

used in UKCP09 have a typical resolution of around 300km. 

  

The model includes 10,000s of dynamical variables and 100s of parameters specifying 

the value of physical magnitudes, representing physical constants or controlling small 

scale processes which are not resolved explicitly. To aid the discussion let us 

introduce some notation. Let ...}),(),({)( 21 txtxtx =  be the vector of all dynamical 

variables and ...},,{ 21 ααα =  the vector of all parameters in the model; then let 

);( αφ xC
t  be time evolution of HadCM3, specifying the future value of the system’s 

dynamical variables given certain initial conditions and certain parameter values.  

 

                                                
6 Our account of the method is based on (Murphy, et al., 2010, Ch. 3).  
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Even state-of-the-art computers take a long time to make a run of  );( αφ xC
t , and so a 

simpler model is needed for most calculations (a ‘run’ is the calculation of the future 

value of x  given a particular initial condition and a set of parameter values). To this 

end the entire ocean module is eliminated and replaced by a so-called slab ocean. 

With no currents and a uniform effective depth this slab ocean is defined via simpler 

equations. The result is HadSM3.7 We write );( αφ xS
t  to denote the time evolution of 

this model, where we take it as understood that the vectors x  and α  vary with the 

model structure (HadSM3 having fewer variables and parameters than HadCM3).  

 

Part 2 – PPE. The problem in determining the future values of x  is that ‘the 

available information is seldom precise enough to allow the appropriate value of a 

given parameter to be accurately known’ (Murphy, et al., 2010, 37).  Not knowing 

what value of α  to use in our calculations, assuming there is one, ‘gives rise to the 

parameter component of model error’ (ibid.).8  

 

The technique of a perturbed physics ensemble (PPE) is designed to address this 

difficulty.9 The idea of a PPE is to calculate future values of x  for a number of 

different values of α . If, for instance, modellers are uncertain about the reasonable 

value of parameter 2α  but believe that it lies between min,2a  and max,2a , they carry out 

calculations of x  for as many values in the  interval ],[ max,2min,2 aa  as they can afford. 

The variability of the outcomes then gives them a sense of the sensitivity of the 

model. Calculating future x ’s for a number of different parameter values amounts to 

constructing a PPE because the variation of the parameter values amounts to 

perturbing the physics yet without changing the mathematical structure of the model 

(because all equations remain functionally unchanged).  

 

                                                
7 Going from HadCM3 to HadSM3 roughly doubles the speed of the model. 
8 This assumption is controversial. (Smith, 2006 ) argues that for imperfect models appropriate values 

(leading to trustworthy forecasts)  may not exist.  For want of space we set these worries aside; for 

more on this point see (Smith and Stern, 2011).  
9 We note in passing the lack of unanimity on whether the second ‘P’ of PPE stands for ‘parameter’, 

‘parameterization’, or ‘physics’. For more on PPE’s see (Allen and Stainforth, 2002). 
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In a complex model like HadCM3 a single research centre can only make a relatively 

small number of runs due to the limitation of computational resources. The question 

then is how to construct a PPE for a model with 100s of parameters if only a small 

number of runs can be made. UKCP09 solves this problem by first restricting 

attention to atmospheric parameters and then soliciting parametrisation experts to 

identify those parameters which control the crucial processes in the system and on 

which the future values of x  depend most sensitively. This process led to the 

identification of 31 crucial parameters and the definition of associated plausible 

intervals for them.  

 

To explore the uncertainty of future values of x  brought about by the variation in 

these 31 parameters, 280 runs were made with HadSM3. Information from 17 

HadCM3 runs was added later. 

 

Part 3 – Emulator. Unfortunately this number remains too small to provide a good 

understanding of the diversity of outcomes. An emulator is therefore built to provide 

values of x  corresponding to values of α  for which no runs were made. In other 

words, the emulator ‘fills the gaps’ between the 280 points obtained in Part 2. 

 

Part 4 – Probability. What is the uncertainty of future values of x  given the diversity 

in α ? Uncertainty is quantified by giving a probability distribution over the interval 

associated with α . The emulator correlates every value of α  with an outcome x , and 

these distributions are translated into probabilities for x . UKCP09 assumes that each 

value of α within the middle 75% of the interval is equally likely and that the 

probability linearly drops to zero at the minimum and maximum values. These 

probabilities are then adjusted by assigning relative weights to all values of α 

according to the emulator implied ability of the model to represent observations when 

simulating a period similar to the past. 

 

Part 5 – Downscaling. The model calculations are done with a resolution near 300km 

but predictions are sought at 25km scale. To generate predictions at that level of detail 

the results are downscaled using simulations of a limited area regional climate model 

configured from HadCM3 and run at 25 km horizontal resolution.  
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The endeavours of these five parts taken together produce the predictions we have 

seen in the last section.  

 

 

4. Structural Model Error  
 

Each of these steps raises potentially significant conceptual and methodological 

questions. For want of space we can only deal with what we see as one central 

problem in Part 1: structural model error (SME). Like every model, HadCM3 has its 

imperfections. In order to specify );( αφ xC
t  a number of strongly idealising 

assumptions are made. These include distortion of the topography of the earth 

(mountain ranges like the Andes are systematically too smooth and too short, small 

volcanic islands chains with visible impacts on atmospheric circulation do not exist), 

and approximisations of the effects of cloud fields which cannot be  simulated 

realistically at the available resolution. Furthermore, solutions of the discretized PDE 

differ from those of the original PDE, and the PDE itself differs from what the true 

equations of the world would be (assuming such equations exist at all). In addition, 

there are limitations to our scientific understanding of the climate system and there 

may be relevant factors and processes about which we are simply unaware which 

would lead us to alter the equations of the model even under our current 

computational constraints.   

 

Inasmuch as SME is due to shortcomings in the equations of the model, the 

challenges it poses to forecasting cannot be resolved by varying the model’s 

parameters. If a model has SME this means that the  time evolution of an ensemble 

will, eventually, differ from  that of a better model and indeed reality itself, if a 

relevant distribution can be associated with reality. No adjustment of the parameters 

can remove this difference. The crucial question is: how soon do dramatic effects of 

SME manifest themselves in a given situation? And to what extent can a model with 

SME still be informative about the target system? On what timescales does the 

science (which underlies the model) suggest that a decision maker should ‘expect’ a 

big surprise if he took the model outputs as trustworthy? 



 8 

  

UKCP09 acknowledges the presence of SME and proposes a way to deal with it. The 

message is that the uncertainties due to SME can be estimated and taken into account 

in projections.10 In this section we outline their approach, and in the next we ask 

whether its use for the provision of quantitative decision support is justified.  

 

UKCP09 aims to capture the difference between the model and the real world with a 

so-called discrepancy term, which  

 
‘represents how informative the climate model is about the true climate, and it measures the 

difference between the climate model and the real climate that cannot be resolved by varying the 

model parameters. Such differences could arise from processes which are entirely missing from 

the climate model, or from fundamental deficiencies in the representation of processes which 

are included, through (say) limited resolution or the adoption of an erroneous assumption in the 

parameterisation scheme.’ (Sexton, et al., 2012, 2515)11 

 

Assume, then, that we are interested in ‘the true climate’12 at a particular future 

instant of time *t  (for instance August 2080) and let c  be the true value of x  at *t  

(hereafter ‘target’). The relation between the model output and the target then is:13 

 

dxc S
t += *);( 0* αφ ,  

 

where *α  the set of parameter values that best simulates the target. The discrepancy 

d  is a vector in the system’s state space, and it can be interpreted as telling us ‘what 

the model output would be if all the inadequacies in the climate model were removed, 

without prior knowledge of the observed outcome’ (ibid.).  

 

                                                
10 The UKCP09 science report calls the proposed method ‘an appropriate means of quantifying 

uncertainties in projected future changes’ (Murphy, et al., 2010, 66).  
11 See also (Murphy, et al., 2010, 63-64).  
12 There is, obviously, a serious confusion that we cannot clarify here: climate is a distribution, the state 

of the atmosphere at a given time (‘weather’) is a point. Our uncertainty in the ‘true’ (we would prefer 

‘target’) value of x at time t does not correspond to the climate at time t.  
13 See (Sexton, et al., 2012, 2521). Throughout we use our own notation which differs from Sexton’s. 
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Now follow two crucial assumptions. The first assumption is ‘that the climate model 

is informative about the real system and the discrepancy term can be seen as a 

measure of how informative our climate model is about the real world’ (ibid., original 

emphasis). The idea is that informativenss comes in degrees and is indirectly 

proportional to the length of d : the smaller d  the more informative the model. That 

the model is informative then amounts to assuming that d  is small. We call this the 

informativeness assumption. The second assumption concerns the discrepancy. 

While d  is defined as a vector, in practice one cannot know the exact vector and so it 

is assumed that there is probability distribution ε  over d . This distribution is then 

assumed to be Gaussian (ibid.). We refer to the package of the two as the Core 

Assumption.  

 

With this assumption in place UKCP09 sets out to estimate the parameters of ε . Not 

being omniscient, one cannot just compare model outputs with the truth. The crucial 

move in UKCP09 is to use a multi model ensemble (MME) as a proxy for the truth:  

 
‘Our key assumption is that sampling the effects of structural differences between the model 

chosen for the PPE and alternative models provides a reasonable proxy for the effects of 

structural errors in the chosen model relative to the real world.’ (Sexton, et al., 2012, 2516)14 

 

The MME in question contains 12 models (Sexton, et al., 2012, 2519). The claim then 

is that measuring the average distance of HadSM3 to a set of different models yields a 

similar result as measuring its distance to the real world – hence, d  can be 

determined by measuring by how much HadSM3 diverges from those other models. 

We call the view that an MME is a trustworthy proxy for the real world the proxy 

assumption.   

 

For each model in the ensemble *α , the best HadSM3 analogue, is determined. 

Having found the best analogue, the prediction error b is calculated; essentially the 

difference between the two model outputs. With these b ’s the mean and variance of 

ε  is determined.15 

                                                
14 See also (Sexton, et al., 2012, 2526) and (Murphy, et al., 2010, 64).  
15 See (Sexton, et al., 2012, 2521-27). To be precise, what is determined is the covariance matrix. 
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Under the proxy assumption, this procedure quantifies the additional uncertainty due 

to model error. This uncertainty is now added to the uncertainty about values of x 

obtained in Part 4, yielding the total uncertainty. The uncertainty is expressed as a 

probability distribution; it is this distribution that is presented as guidance for decision 

makers. 

 

In the following section we argue that neither the core assumption nor the proxy 

assumption are well-founded. The restriction to these two assumptions is due to lack 

of space; other aspects of the approach also raise serious questions. 

 

 

5. The Assumptions Scrutinised  

 

Our discussion of the core assumption focusses on the informativeness.  It is an 

undisputed fact that systematic errors in the models in question lead to non-trivial 

macroscopic errors of simulation, of the past and of the future. Seager et al. (2008) 

have noted their inability to reproduce the dust bowl of the 1930’s even given the 

observed sea-surface temperatures. This is not a small inadequacy when one is 

focused on the resolution offered by UKCP09. Given these systematic errors, there 

are lead times at which the failure of the model to simulate realistic weather cause the 

climate of the model to differ from that of the planet (Smith and Stern, 2011). 

Inasmuch as the models used are not close to the target, the informativeness 

assumption fails. The figure below shows model global mean temperatures over the 

last century of the 24 CMIP3 models.16 Note that while all models show warming 

between 1900 and 2000, their average temperatures vary tremendously. The 

magnitude of the error in the global mean in a hindcast of the last century casts 

significant doubt on the viability of the informativeness assumption on a 25 km 

forecast to the end of this century. 

                                                
16 Thanks to Ana Lopez for producing the figure.  
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Even if one were to discard the above as undue pessimism and uphold the 

informativeness assumption, there is a further problem. An argument to uphold the 

informativeness assumption now must be based on the trustworthiness of the 

modelling assumptions, typically taking the form that if the model assumptions are 

close to the truth, then the model outputs must be close to the truth too. While this 

inference works in some specific applications, it is generally false for nonlinear 

models even if their SME is extremely small (Frigg, et al., 2012, Smith, 2002). Since 

the relevant climate models are nonlinear, it follows that even if the model 

assumptions were close to the truth this would not automatically warrant trust in the 
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model outputs. In fact, the outputs for relevant lead times fifty years from now could 

still be seriously misleading. 

 

The discussion of the proxy assumption is complicated by the fact that the literature 

on the subject exhibits a certain degree of schizophrenia. On the one hand the method 

is illustrated and advertised as delivering trustworthy results; on the other hand 

disclaimers that effectively undermine the crucial assumptions are also included, 

sometimes parenthetically, obscurely or deep within technical discussions.17 The 

documentation gives with one hand and takes back with the other. We now review the 

activities of both hands and conclude that the hand that takes back voids the 

trustworthiness of the forecasts for quantitative decision support. 

 

The first reason cited in support of the proxy assumption is that multi model averages 

give a better representation of climate than any individual model: ‘Indeed, the 

multimodel ensemble mean has been shown to be a more skilful representation of the 

present-day climate than any individual member’ (Sexton, et al., 2012, 2526). Yet it is 

also acknowledged that ‘systematic errors to all current climate models persist’ (ibid.) 

so even if one were to accept that such a multi-model mean were more skilful at 

representing the present day than individual models, is ‘more skilful’ close to being 

‘skilful’? Unfortunately there appears to be no evidence that ‘more skilful’ can be 

equated with ‘skilful’ for many variables of importance for future climate change.  

 

The second reason mentioned in support of the proxy principle is that ‘the structural 

errors in different models can be taken to be independent’ (Murphy, et al., 2010, 66) 

and that therefore the ensemble samples uncertainty well. However, immediately after 

we are warned that   

 
‘Whilst there is evidence for a degree of independence […], there is also evidence that some 

errors are common to all models […], due to shared limitations such as insufficient resolution or 

the widespread adoption of an imperfect parameterisation scheme. From this perspective, our 

estimates of discrepancy can be viewed as a likely lower bound to the true level of uncertainty 

associated with structural model errors.’ (Murphy, et al., 2010, 66) 

 

                                                
17 An example is (Murphy, et al., 2010, 63-69). 
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And then the conclusion is drawn that: ‘The main (and inevitable) limitation, 

however, is that it [the proxy assumption] does not account for the potential impacts 

of errors common to all climate models used in the prediction (Sexton, et al., 2012, 

2516). 

 

One cannot have ones cake and eat it too. If there are common errors the proxy 

assumption fails. Indeed such common errors have been widely acknowledged (see, 

for instance, Parker, 2011). Furthermore, the mathematical space of all possible 

climate models (if there is some such thing) is huge, and there is no reason to believe 

that the 12 models we de facto work with provide a representative sample.   

 

For these reasons, the assumption that the use of an MME will accurately quantify the 

distance to our true target is unjustified. It produces a distribution that is more 

consistent with the diversity of current models but need not reflect the uncertainty in 

our future. It is important to note that the fear is not so much that the width of the 

uncertainty distribution is too narrow, but rather that the distribution is simply in the 

wrong place; that the mean of the distribution will shift significantly if the model 

simulations become realistic.  

 

Echoing Murphy et al., we note that ‘[i]t is important to stress that our approach to the 

specification of discrepancy can only be expected to capture a subset of possible 

structural modelling errors and should be regarded as a lower bound’ (Murphy, et al., 

2007, 2011). A lower bound need neither yield trustworthy forecasts nor provide a 

suitable basis for quantitative decision support. 

 

 

6. Conclusion 
 

We have argued that there is little evidence for interpreting UKCP09’s predictions as 

trustworthy forecasts for quantitative decision support. Questioning the evidence, 

however, does not amount to proving it wrong. Our point is that the premises of the 

argument do not warrant trust in the results, and for decision support in the face of 

climate change this is the crucial aspect. 
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To be fair to the scientists who worked very hard to make UKCP09 the best it could 

be, several points should be noted. First the deliverables of the project were defined 

before any viable approach to meet them was available in the peer-reviewed literature. 

Second, the United Kingdom Climate Impacts Program, which is much broader than 

UKCP09, faced the dilemma of motivating users to engage with the real challenges 

and risks posed by climate change in the face of deep uncertainty: the challenge of 

keeping users interested when the information they most desire lies beyond the reach 

of today’s science. And lastly, pointers to the fact that a naïve interpretation of 

UKCP09 probability distributions is untenable can indeed be found within the 

UKCP09 material. 

 

That said, the aim of UKCP09 was to provide trustworthy forecasts now, and this, we 

have argued, they fail to do.  Kelly’s 1979 plea holds today: climate prediction 

experiments remain essential, and they must ‘be conducted with scientific rigour and 

presented with an honest assessment of the uncertainties involved’ (Kelly, 1979, 182) 
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