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Abstract 20 
When do probability distribution functions (PDFs) about future 21 
climate misrepresent uncertainty? How can we recognise 22 
when such misrepresentation occurs and thus avoid it in 23 
reasoning about or communicating our uncertainty? And when 24 
we should not use a PDF, what should we do instead? In this 25 
paper we address these three questions. We start by providing 26 
a classification of types of uncertainty and using this 27 
classification to illustrate when PDFs misrepresent our 28 
uncertainty in a way that may adversely affect decisions. We 29 
then discuss when it is reasonable and appropriate to use a 30 
PDF to reason about or communicate uncertainty about 31 
climate. We consider two perspectives on this issue. On one, 32 
which we argue is preferable, available theory and evidence in 33 
climate science basically excludes using PDFs to represent 34 
our uncertainty. On the other, PDFs can legitimately be 35 
provided when resting on appropriate expert judgement and 36 
recognition of associated risks. Once we have specified the 37 
border between appropriate and inappropriate uses of PDFs, 38 
we explore alternatives to their use. We briefly describe two 39 
formal alternatives, namely imprecise probabilities and 40 
possibilistic distribution functions, as well as informal 41 
possibilistic alternatives. We suggest that the possibilistic 42 
alternatives are preferable. 43 
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1. Introduction: the common use of PDFs to 49 

represent future weather and climate  50 

Information about future climate is gained from past experiences and observations, 51 
conceptual/theoretical understanding of relevant physical processes, forward evolution of 52 
simulation models, and expert judgement. In the case of weather, predictions are largely 53 
developed with forecast models. In each case, the available information is not sufficient to 54 
enable one to write down a single unique description of the future state, so that we must 55 
somehow represent our uncertainty with a range of outcomes. One common way of doing 56 
this is to generate probability distribution functions (PDFs) (see, e.g., IPCC [2013], Lowe et 57 
al. [2018] and Lee and Marotske [2021]). Full PDFs are distributions in which each possible 58 
outcome is specified and assigned a specific weight, a probability, with the total probability 59 
adding up to 1. Partial PDFs are distributions in which a range of possible outcomes are 60 
specified, and the range is, at least, assigned a qualitative probability, e.g., the range is 61 
taken to be the likely or very likely range. Except where otherwise specified, the (partial or 62 
full) PDFs we discuss here are distributions of real-world outcomes (and not of, for example, 63 
model runs). This paper is aimed at an interdisciplinary audience of producers and 64 
consumers of PDFs in the climate context. We aim to clarify, for this audience, when it is 65 
appropriate to use PDFs to represent uncertainty about future climate and how this 66 
uncertainty should be represented when using PDFs is not appropriate. We develop a 67 
general argument to answer these questions, largely by drawing on existing literature in 68 
climate science and philosophy about representing uncertainty and about problems with the 69 
use of PDFs in climate science. We use work in philosophy, in particular, to provide a 70 
general understanding of uncertainty and of when not to use PDFs.  71 
 We draw, in section 2, on the philosophy of probability [Hájek, 2019] to provide a 72 
general characterisation of kinds of uncertainty and how these might be misrepresented. We 73 
also use this characterisation to illustrate some of the ways in which PDFs might 74 
misrepresent our uncertainty about future weather or climate and some of the effects such 75 
misrepresentation might have on decision making.  76 
 We go on, in section 3, to consider the conditions under which it is appropriate to 77 
provide PDFs for future climate. We do so with the help of our characterisation of uncertainty 78 
and with the help of worries that scientists and philosophers of science have raised about 79 
representing uncertainty about future climate with PDFs. Such worries have been based on 80 
the limited opportunities for quantitative evaluation of PDFs, reliance on ensembles of 81 
opportunity in their generation and the limitations of supporting theory about the climate 82 
system (see, e.g., Hall et al. [2007], Stainforth et al. [2007], Parker [2010], Knutti et al. 83 
[2010], Katzav [2014] and Baumberger et al. [2017]). We go beyond existing discussions by 84 
considering the conditions in which their worries about the use of PDFs apply, including 85 
whether the worries can be mitigated by expert appeals to a variety of types of evidence. 86 
Moreover, we provide advice about when using PDFs is appropriate. We follow existing 87 
practice (e.g., Stainforth [2007] and Parker [2010]) and contrast the case of climate 88 
projections with that of weather prediction to illuminate some of the challenges of the former. 89 

Section 3 presents two perspectives on whether PDFs are appropriate in the climate 90 
context. One, which reflects current practice, but we argue is problematic, is to continue to 91 
use PDFs but to explicitly recognise the limited representation of uncertainty they provide 92 
and their resulting limitations as tools in supporting policy decisions. Alternatively, there is 93 
our preferred perspective, namely that PDFs should not be used in the climate context. 94 



Finally, in section 4, we explore two alternatives to PDFs, one provided by imprecise 95 
probability theory and one by possibility theory. We note that imprecise probabilities permit 96 
improving on PDFs but fail to avoid the key problems with their use. Possibility theory is our 97 
preferred option. Section 5 is our conclusion. 98 

2. When probabilities misrepresent uncertainty 99 

2.1 Three kinds of uncertainty 100 

Our focus here will be on three of the main kinds of uncertainty, though these are usually 101 
presented in a probabilistic context while we extend them to cover non-probabilistic 102 
uncertainty [Halpern 2017; Hájek, 2019]. The first kind concerns how events will unfold over 103 
time. This is the kind of uncertainty we seem to be talking about when we say that the 104 
chance that a coin will land heads is 50%, or that the chance of rain in South Brisbane 105 
tomorrow is about 40%. Here, uncertainty is a measure of the potentiality, propensity, or 106 
frequency, of certain kinds of events. We can call such uncertainty aleatoric uncertainty.  It 107 
is also sometimes called objective uncertainty, since it seems to refer to objective features 108 
of the world (the potentialities, propensities or frequencies). 109 

The second kind of uncertainty comprises how confident we are in propositions. This 110 
is the kind of uncertainty we seem to be talking about when we say things such as that we 111 
have no doubt that Earth is not flat and that we would bet our lives on it, or that we have very 112 
high confidence that global warming has caused the cryosphere to shrink. Here, uncertainty 113 
is a measure of the strength of an individuals’, or a group’s collective, beliefs and thus can 114 
be called subjective uncertainty. Importantly, we take subjective uncertainties to be actual 115 
degrees of belief. Subjective uncertainty is, by contrast, often identified with degrees of belief 116 
that cohere, i.e., obey the axioms of probability theory [Hájek, 2019]. We avoid such an 117 
identification so as to cover probabilistic and non-probabilistic uncertainty. 118 

The third kind of uncertainty captures the degree of support an individual’s evidence 119 
or data, or a group’s collective evidence or data, provides for an hypothesis. This is the kind 120 
of uncertainty we seem to be talking about when we say that general relativity is highly 121 
probable given the evidence for it, or that attribution studies provide support for the thesis 122 
that global warming is influencing extreme weather events. We will call such uncertainty 123 
evidential uncertainty. The difference between subjective and evidential uncertainty is that 124 
the former is concerned with our beliefs while the latter is concerned with logical relations 125 
between propositions or statements we might believe. 126 

It is possible to categorise uncertainties differently, or to argue that, strictly speaking, 127 
there is only one kind of uncertainty and that the others are reducible to it or are somehow 128 
based on confusion [Hájek, 2019]. For example, one might argue that one’s evidential 129 
uncertainty really is just the subjective degree of belief one would have if one’s beliefs 130 
cohered. We, however, propose to bracket the question whether there is one kind of 131 
uncertainty. Instead, we use our understanding of the different kinds of uncertainty as guides 132 
to when it is appropriate to represent uncertainty using probabilities. 133 



2.2 How precise probabilities might misrepresent 134 

uncertainty 135 

Consider aleatoric uncertainty. It might be that there is no limit frequency, that is, no stable 136 
ratio to which the ratio between the number of events of a certain kind and specified intervals 137 
of time converges as the ratio is looked at across longer and longer periods of time [Fine, 138 
1988]. For example, the number of purple scarves worn in winter may fluctuate in an 139 
unstable way over winters. In the climate context, we know that average temperatures on 140 
timescales of tens of thousands of years do not converge on a mean but instead fluctuate 141 
[Lovejoy, 2015]. Where the timescale of prediction is similar to or longer than the timescale 142 
of fluctuations in the limit frequency, it would be a mistake to represent the probability of the 143 
event using a precise probability. 144 

Consider subjective uncertainty. In some circumstances, we do not have a precise 145 
degree of confidence in a prediction. Accordingly, to describe our confidence as having a 146 
precise probability would be to misrepresent it and thus to misrepresent our subjective 147 
uncertainty. For instance, I do not have any particular degree of confidence that a certain 148 
climate model provides a “good” representation of global mean precipitation change over the 149 
next eighty years: even though I might clearly be able to identify one model as “better” than 150 
another, they may both, as far as I can tell, be quite poor or quite good in absolute terms. 151 
Climate scientists sometimes exhibit such non-probabilistic subjective uncertainty [Millner et 152 
al., 2013]. 153 

Consider evidential uncertainty. In some cases, it makes sense to combine different, 154 
precise probabilistic projections into a single one, e.g., using Bayesian model averaging. In 155 
other cases, however, evidence is fundamentally ambiguous, pointing to incompatible 156 
precise probabilities for an hypothesis. In such cases, the evidence does not give the 157 
hypothesis a precise probability. For instance, we might have two competing models of the 158 
El Niño/La Niña–Southern Oscillation, each based on plausible but differing theoretical 159 
mechanisms. The two models offer substantially different, precise probabilistic forecasts 160 
about the formation of La Niña conditions towards the end of the year. In this case, it only 161 
makes sense to say that there is evidence pointing both ways.   162 

In addition, many uncertain situations contain elements of more than one of these 163 
types of uncertainty, and a probability function which effectively represents one kind of 164 
uncertainty may not be adequate for representing another. 165 

2.3 How PDFs might misrepresent uncertainty about 166 

weather and climate, and some potential risks of such 167 

misrepresentation 168 

The above illustrative examples are of cases in which precise probabilities misrepresent 169 
uncertainty (in one sense or another of ‘uncertainty’). Our focus now is on what are perhaps 170 
less obvious cases, cases in which PDFs misrepresent uncertainty. We explore how such 171 
cases can occur as well as why they might be problematic. We emphasise that here too the 172 
examples we give are hypothetical rather than real-world examples. We engage with a real-173 
world example later, when (in section 3.3) we discuss the use of expert opinion by the IPCC 174 
to transform PDFs produced by climate model ensembles. 175 



The underlying issue brought out in our examples, and subsequent discussion, is that 176 
when we misrepresent uncertainty in one way or another, we misrepresent what available 177 
evidence justifies. For example, if we present our evidential uncertainty as being within a 178 
narrower or more precise range than it is, we ignore evidence indicating possibilities that are 179 
outside of the range. Even when probabilities appear to misrepresent only a scientist’s 180 
subjective uncertainty, this often also involves a misrepresentation of available evidence and 181 
what it supports, since scientists’ subjective uncertainty is dependent on their familiarity with, 182 
and interpretation of, the evidence. Inaccurate or incomplete appraisals of the evidence, we 183 
take it, are inherently unreliable but are also potentially problematic in that they might 184 
misdirect research and lead to further false beliefs about the world. Such appraisals also 185 
threaten to be a poor basis for policy or, more broadly, for practical decisions. 186 

2.3.1 Model frequencies misinterpreted as real-world probabilities 187 

Consider a weather forecast for next week generated from a set of five simulations with a 188 
weather model. The “chance of rain” is derived directly from the number of model runs which 189 
show rain at any particular location and point in time. None of the runs show rain at my 190 
location in 10 days time at 4pm, so the “chance of rain” is given as 0%. However, 191 
comparisons between models and out-of-sample outcomes show that model-based weather 192 
predictions at these lead times are not fully reliable (see, e.g., Risbey et al. [2021]). 193 
 In this case, taking the frequencies represented in the model to be those of the 194 
weather system is, because of model unreliability, to misrepresent aleatoric uncertainty. It 195 
also involves misrepresenting our subjective and evidential uncertainty, because the 196 
unreliability is known. The identification of 0% probability is particularly unfortunate because 197 
it implies certainty. For instance, an outdoor event organiser might choose not to make 198 
contingency plans for rain based on false certainty that it will not occur. 199 

2.3.2 Biased ensembles of opportunity 200 

An ensemble of opportunity is an ensemble of models that happen to be available at a time 201 
[Tebaldi and Knutti, 2007]. Some ensembles of opportunity bring together available state-of-202 
the-art climate models, that is, climate models that are individually designed to be as good 203 
as possible along a variety of dimensions. Examples of such ensembles of opportunity are 204 
those of the Coupled Model Intercomparison Project (CMIP) [Taylor et al, 2012; Katzav and 205 
Parker, 2015; Lee and Marotzke, 2021]. These ensembles are used to project full or partial 206 
PDFs for key climatic quantities over the coming century, including temperature change and 207 
precipitation. Unlike the case presented in 2.3.1, the focus is on spatially and temporally 208 
aggregated information such as ten-year means, medians or 90th percentiles of daily values. 209 
Collections of small numbers of model runs from each individual model, which are assumed 210 
to be probabilistically robust representations of model output, are combined to produce 211 
distributions of these quantities. Even if this assumption is accurate, however, there is 212 
evidence that the results from multiple models are PDFs which have their probability mass in 213 
the wrong place (as ‘best guesses’ with biases, including many shared biases, the models 214 
produce results that tend to cluster in the wrong place) and do not span the space of 215 
possibilities (as ‘best guesses’, the models do not adequately explore extremes, even of 216 
aggregated data about temperature and other quantities) [Taylor et al., 2012; Borodina et al., 217 
2017; Lee and Marotzke, 2021]. 218 



 In this case, PDFs do not represent the evidential uncertainty about the provided 219 
projections (since the projections are biased and overemphasise central ranges) and thus do 220 
not represent what our subjective uncertainty ought to be or even is. The potential results 221 
include, among other things, being overconfident that scenarios in the extreme values (tails) 222 
of the PDF distribution will not occur and being overconfident that the consensus is correct. 223 
Overconfidence here may lead to over-optimised adaptation strategies. 224 

2.3.3 Failure to propagate assessed uncertainties through chains 225 
of models 226 

The IPCC’s fifth assessment [IPCC, 2013] used the outputs of CMIP to derive temperature-227 
change projections by turning the observed model temperature-changes into a probability 228 
distribution of model runs. The authors then judge that the 90% model range is only “likely” 229 
(66%+) in the real world. Climate impact modellers, however, typically do not use inputs from 230 
outside the range of the models, even though the IPCC implies a nontrivial possibility of such 231 
an outcome (for example, Mendlik and Gobiet [2016] describe how to select a subset of 232 
simulations representative of the range of a larger ensemble, for use in impact modelling). 233 
Doing so might misrepresent IPCC expert judgement, and by implication the subjective and 234 
evidential uncertainties that underpin this judgement, either in an explicitly probabilistic way 235 
or by implying that a full range is covered (such as by selecting a “high”, “medium” and “low” 236 
case from the available model runs). As a result, secondary projections may systematically 237 
underestimate uncertainty [Thompson et al, 2016] and inadvertently neglect a long tail of 238 
potential outcomes that may be of interest to decision makers.1 239 

2.3.4 Misrepresenting the breadth of expert opinion  240 

Consider a situation where an expert elicitation procedure is used to determine a probability 241 
distribution for future sea level. However, all experts are selected from one institution. Or 242 
perhaps all experts are ocean dynamicists, none are ice sheet specialists, and they do not 243 
take much account of the contributions or uncertainties related to ice sheet flows, stability 244 
and melt. A real-life case in which this occurred may simply involve a poorly designed study. 245 
In principle, however, experts may not be fully aware of diversity of opinion or of all relevant 246 
available information, or they may be worried about including non-mainstream views in 247 
studies. This is a case of misrepresenting the subjective and evidential uncertainty of the 248 
community and, as in the case of the ensemble of opportunity, might lead to over-optimised 249 
adaptation strategies. 250 

3. Recognising when a PDF is (not) appropriate 251 

A PDF is a formal way to distribute probability mass. The most fundamental attributes of 252 
such a distribution are the state space over which it is defined and its shape. Depending on 253 
the application for which it is to be used, a user may be interested in any function of the 254 
distribution, such as the mean/median value, the spread, the proportion beyond a certain 255 
threshold, or the tails. 256 

 
1 The ‘H++’ scenarios of future, regional United Kingdom sea levels are examples of explorations of 
extremes [Lowe et al., 2009]. 



 There are some standard arguments for tending to stick with the application of 257 
probability theory in expressing uncertainty. These include the existence of well-developed 258 
theory that guides their updating in light of evidence and well-developed theory that guides 259 
decisions in light of the probabilities of future events [Halpern, 2017]. In addition, practical 260 
considerations may, depending on the context, favour the use of probabilities in 261 
communicating uncertainty [Hinkel et al., 2019]. 262 
 That said, the formal non-probabilistic approaches discussed in the next section also 263 
have well-developed theories of updating and corresponding decision theories [Halpern, 264 
2017]. Moreover, convenience and historical use are not, from a scientific perspective, good 265 
reasons for continuing to use an inappropriate methodology. We have described above 266 
some potential consequences for real-world decision making which stem from inappropriate 267 
use of PDFs. In this section, we more systematically consider when it is appropriate to 268 
provide PDFs that describe climate and offer some more concrete guidelines for identifying 269 
these circumstances. 270 
 When is a PDF appropriate? A simple answer is: when it represents what our 271 
subjective probability ought to be given available evidence, including evidence concerning 272 
our uncertainty. In such a case, subjective and evidential uncertainty will align. Ideally, we 273 
would also want these probabilities to match aleatoric probabilities (when these exist in the 274 
real world). 275 
 How can we detect when our PDF is appropriate? A first test for subjective 276 
uncertainty is simple: we ask whether we really believe what the PDF says. If the PDF is 277 
subject to caveats which are such that we do not believe it, it does not fully represent our 278 
uncertainty [Parker 2010]. In addition, however, we want the subjective uncertainty we arrive 279 
at to match the subjective degree of uncertainty we ought to have. Even if we already have a 280 
level of subjective uncertainty, we want to make sure that it is the one we ought to have. We 281 
know that our actual confidence in hypotheses often does not fully reflect available evidence, 282 
either because of biases in our reasoning [Benjamin, 2019; O’Hagan, 2019] or because, as 283 
is common in complex, interdisciplinary fields of research such as climate science, 284 
individuals only have a partial understanding of the relevant evidence. 285 
 Making sure that our subjective degree of belief is what it ought to be involves 286 
ensuring that our beliefs cohere, as far as we can tell, with each other. In particular, 287 
accepting a PDF should not involve misrepresenting our understanding of the evidential 288 
uncertainty, that is, accepting a PDF should not involve misrepresenting how much evidence 289 
is seen to support the PDF, including any limitations in our knowledge of the extent of this 290 
support. 291 
 In the remainder of this section, we apply this general requirement in working out, in 292 
more detail, the circumstances in which our PDFs might capture our uncertainty about 293 
climate and weather. In subsections 3.1 and 3.2, we note that two sufficient conditions for 294 
providing a PDF, namely repeated quantitative evaluations and theory-based evaluations, 295 
are not fulfilled in the case of climate projections, though the first is fulfilled in the case of 296 
weather predictions. We then provide, in 3.3, one perspective (P1) according to which 297 
having either a quantitative evaluation of a PDF or a theory-based one is also necessary for 298 
providing the PDF. Although we prefer perspective P1, we recognise that the use of PDFs is 299 
ubiquitous in climate science and unlikely to be deprecated soon. Thus, we also describe a 300 
second perspective (P2), that in special circumstances expert assessment can compensate 301 
for limited data and theory sufficiently to use PDFs. We bring out the challenges of this 302 
perspective by providing some necessary conditions for the adequacy of expert generated 303 
PDFs. 304 



3.1 Repeated, quantitative evaluation of past probabilistic 305 

forecasts 306 

In the case of a repeated forecast, such as a weather forecast, we can generate probabilistic 307 
predictions and use our data (actual observations over the forecast period) to determine how 308 
accurate our probabilistic predictions are [Risbey and O’Kane, 2011]. Ideally, in such a 309 
process, the probabilistic predictions match observed frequencies well, so that using the 310 
predictions to guide expectations means our degree of confidence will match evidential and 311 
aleatoric probabilities. Formal measures can assess the value of the information content of 312 
the forecast, and a user might choose to set some threshold of error-tolerance relating to the 313 
costs and losses associated with incorrect forecasts. Where the probabilistic predictions are 314 
found to be unacceptably inaccurate, they can be revised, and the performance of the new 315 
forecast quantitatively compared with the old one. For this reason, when high-quality data 316 
are available in sufficient quantity, quantitative evaluation against relevant out-of-sample 317 
data can be adopted as the gold standard for a defensible PDF.  318 
 Where, as in seasonal climate forecasts, relevant out-of-sample testing is possible 319 
(data quality is high) but only a small amount of data is available (data quantity is low), 320 
similar trials can be undertaken using formal measures of reliability, but statistical confidence 321 
in the assessment will be lower. Additional forecast-outcome data may be generated using 322 
past data/conditions (“hindcasts”) and these can provide a good quantitative measure of 323 
reliability, though with the caveat that they are not truly out-of-sample even where rigorous 324 
cross-validation approaches are employed [Risbey et al., 2021].   325 
 In either of the above cases, if empirical reliability assessment suggests that the 326 
observed data are not consonant with the forecast distribution (within the threshold of user 327 
tolerance), then it should not be provided as a PDF. Further, even where repeated testing is 328 
possible, we need to be confident that the system is stationary in that it does not change 329 
significantly on timescales comparable with the timescales of the forecasts. Where this is not 330 
so, we have theoretical or empirical reason to suspect that our PDFs will not span the range 331 
of possibilities or will not have an appropriately distributed probability mass. 332 
 For most climate forecasts, we have little out-of-sample data on the relevant 333 
timescales. While, as noted above, seasonal climate forecasts are tested against a small 334 
amount of such data, it remains unclear what skill such forecasts have [Weisheimer and 335 
Palmer, 2014; Risbey et al., 2021]. On decadal and longer timescales, out-of-sample testing 336 
is even more limited, though it is used [Schmidt and Sherwood, 2015, Hausfather et al, 337 
2020]. Moreover, in climate forecasts on all timescales of interest, we are unsure about the 338 
similarity of the testing conditions and the conditions obtaining in the future [Baumberger et 339 
al., 2018; Lee and Marotzke, 2021]. This, in combination with theoretical understanding of 340 
the system’s nonlinearities, gives reason to doubt the reliability of bias correction methods 341 
[Risbey et al., 2021]. Therefore, we need to fall back on theoretical evaluation of model 342 
output or on more qualitative arguments about model quality and adequacy for purpose. 343 

3.2 Theory-based evaluation of PDF credibility 344 

In the absence of repeated trials against new evidence, our ability to explore the range of 345 
possible behaviours within a complex system such as climate is limited. More specifically, 346 
the opportunities for determining the envelope of possible evolutions of the system as well 347 
as the (aleatoric) relative likelihood of these evolutions will be limited. 348 



 Sometimes, extremely well confirmed theory might help–that is, extremely well 349 
confirmed general principles which are potentially true; unlike models, where their 350 
construction involves explicit idealisation. Extremely well confirmed theory might strongly 351 
guide modelling and enable understanding its limitations. Perhaps this is sometimes the 352 
case when theories of gravitation are used to predict aspects of the evolution of a solar 353 
system. In such cases, we also make idealisations, but theory tells us to what extent these 354 
will impact our predictions and thus how confident we can be in the predictions. With such 355 
constraints and understanding, PDFs or even precise predictions might be justified. 356 
 In climate modelling, however, theory provides limited guidance in model 357 
construction and in assessing model limitations [Gleckler et al., 2008; Parker, 2010; Katzav, 358 
2014]. For example, though there is a well known set of equations governing flow on a 359 
sphere, there are no exact solutions, and the flow is subject to small scale processes that 360 
are poorly represented, yet impact even the largest scales (such as cloud and aerosol 361 
processes) [Lee and Marotzke, 2021]. So too, we have no highly confirmed, general and 362 
implementable quantitative theory of how patterns of internal variability develop and impact 363 
overall climate variability [Katzav, 2014]. Thus, although we have large-scale theories of 364 
climate that guide model development, including very high confidence in the greenhouse 365 
effect and large-scale geographical features such as polar amplification, we have no detailed 366 
theory of climate per se. This means, in particular, that theory provides us with limited 367 
guidance in constructing climate models and climate model ensembles. So too, theory 368 
provides limited guidance in interpreting model and ensemble output, including what model 369 
biases imply for output accuracy. Thus, theory tends to leave open the extent to which 370 
output spans the range of possibilities or whether these possibilities are weighted in a way 371 
that reflects reality. 372 
 Indirect empirical support resulting from the examination of retrospective forecasts 373 
over periods in the past can assist here. As we noted in the previous section, however, if 374 
these compare well with past data, then we must next ask whether the climate of any future 375 
forecast state is sufficiently similar to the past that we can take confidence from the 376 
assessment of the past. So too, we must ask whether alternative modelling efforts, which 377 
give rival projections, might also have adequately made the retrospective forecasts [Katzav, 378 
2013]. With limited guidance from theory, it will typically not be possible to answer these 379 
questions in a principled way.  380 
 Another attempt to compensate for the limited theoretical guidance in model 381 
construction and evaluation uses model ensembles. A “Model Land” PDF can, to begin with, 382 
be constructed from a model by running it multiple times with slightly different inputs and 383 
then treating the resulting frequency of outcomes as a sample from a probability distribution 384 
which can be inferred. Initial condition ensembles are used in weather and near-term climate 385 
forecasting, for example, to capture the measurement uncertainty over initial conditions and 386 
propagate this through into a PDF output [Risbey et al., 2021]. Sampling of initial conditions 387 
is in practice usually extremely limited on longer climate scales, with, for example, individual 388 
CMIP models typically contributing fewer than 10 members to CMIP ensembles [Milinski et 389 
al, 2020]. But at least in the theoretical case of a perfect model, this procedure results in a 390 
perfect description of the initial condition uncertainty.  391 
 However, models are idealisations so that, in addition to initial condition uncertainty, 392 
there is also parameter uncertainty about the appropriate values of parameters in model 393 
equations, and structural uncertainty about the representation of the physical process by 394 
means of the model equations. One approach to estimating a lower bound of this uncertainty 395 



is to use perturbed parameter ensembles (variations of a single model by changing the 396 
parameters, essentially a sensitivity analysis), and a second approach is to use multiple-397 
model ensembles (statistically analysing together a set of different models for the same 398 
output) [Baumberger, 2018]. In the absence of appropriate guidance from theory, however, it 399 
is unclear what range of model structures needs to be explored in order to estimate 400 
structural uncertainty in a principled way and ensembles of opportunity are used to provide 401 
substitutes for such estimates [Katzav and Parker, 2015]. Ensembles, therefore, do not 402 
fundamentally alter our inability to estimate uncertainty in the absence of guidance from 403 
adequate theory. We still do not have a principled way for judging the extent to which the 404 
models are exploring the full range of possibilities or are appropriately distributing the 405 
probability mass across possibilities. 406 

3.3 Subjective evaluation of PDF credibility 407 

In the absence of sufficient guidance either from theory or repeated testing, we must rely on 408 
expert judgement. In the following, we describe two alternative perspectives about the 409 
justification for the use of PDFs in this situation. According to perspective P1, which we 410 
outline first, PDFs should not be offered and alternative means of representing uncertainty 411 
should be used.  412 
 Expert judgement is based on one or more theory, model and data-based studies 413 
(including, e.g., on multiple-model ensemble studies and evidence from the palaeo-record of 414 
analogue cases). By hypothesis, our concern here is with circumstances in which theory is 415 
limited and sufficient data to directly evaluate reliability is unavailable. Further, our concern is 416 
with circumstances in which the models by which we draw conclusions from data have 417 
limitations that impact conclusions in unquantified, but substantial, ways. In such a situation, 418 
experts are to a substantial, but not fully known, extent in the dark about the space of 419 
possible hypotheses that might explain data, and thus about the space of possible 420 
projections that are compatible with the data. As a result, experts will not be able to assess 421 
the space of possible projections, never mind how likely they are. Any single PDF that 422 
experts produce will misrepresent (leave out) subjective uncertainty; experts will understand 423 
that it involves arbitrary bounding and weighting of projected possibilities. So too, a selected 424 
PDF would misrepresent evidential uncertainty, since the evidence permits a variety of 425 
ranges of possibilities and, within each range, of weightings of possibilities. 426 
 For example, experts might have to decide whether the latest CMIP ensemble’s 427 
output captures the range of possible future evolution of precipitation in a given region in 428 
coming decades. They will understand that the ensemble includes substantial relevant 429 
biases relating to representation of clouds and convection, to representation of the spatial 430 
patterns and seasonal cycles of key precipitation-governing processes in the ocean and 431 
atmosphere and to representation of internal variability. So too, the ensemble does not 432 
include all relevant forcing factors and feedback mechanisms that could result in different 433 
climate forcing and/or different responses of rainfall to climate forcing [Risbey and O’Kane, 434 
2011; Shepherd, 2014; Lee and Marotzke, 2021]. But what the limited ability to simulate 435 
these phenomena implies for the range and distribution of projections is unknown to a 436 
substantial degree, since neither very highly confirmed theory nor empirical evidence 437 
sufficient to determine this are available. Unfortunately, the models are the primary way of 438 
getting a handle on the evolution of these complex, highly-interdependent phenomena, so 439 
that our ability for model-independent assessment is limited. Thus, any provided PDF that 440 



results from transforming the CMIP ensemble’s results will come with the caveat that it is 441 
unclear how well it fits the evidence and, as a result, will misrepresent subjective and 442 
evidential uncertainty. 443 
 To be sure, experts do bring additional sources of knowledge to the construction and 444 
evaluation of PDFs and thus can help us develop a better understanding of our evidential 445 
uncertainty. For example, in adjusting climate model parameters so that model output better 446 
fits data, climate modelers learn about the ranges within which parameters can be varied 447 
given the data. Modelers also learn about the extent to which accommodating the data 448 
requires specific modeling assumptions and thus about the extent to which the assumptions 449 
are robust. Modelers can make use of this knowledge during elicitation exercises [Schmidt et 450 
al., 2017]. Climate scientists have, further, knowledge relevant to judging the relative 451 
independence of the different studies upon which they draw in preparing a PDF. And where 452 
the various lines of evidence are judged to be somewhat independent, there may be 453 
increased confidence in a PDF (see, e.g., Sherwood et al. [2020] and Lee and Marotzke 454 
[2021]). However, experience with tuning reflects some further exploration of parameter 455 
space while knowledge of robustness of model assumptions reflects some further 456 
exploration of structural uncertainty. These sources of knowledge, as we have noted, do not 457 
by themselves appear sufficiently to compensate for the limited availability of extremely well 458 
confirmed theory. Nor does the appeal to a variety of evidence fundamentally change the 459 
situation. The absence of background theory that delimits the space of hypotheses that 460 
might explain the data means we cannot determine whether it might be equally, or better, 461 
explained by other hypotheses than those being worked with [Katzav, 2013 and 2014]. So, 462 
we are not in a position to estimate how confident we should be in the shared hypotheses 463 
explaining diverse lines of evidence and by implication, how confident we should be in the 464 
resulting PDFs. 465 
 An alternative perspective (P2), which reflects a significant strand of current practice, 466 
including in IPCC reports (e.g., IPCC [2013] and Lee and Marotzke [2021]), is to offer PDFs 467 
as the best probabilistic representations of evidential uncertainty currently achievable while 468 
acknowledging that they are unreliable to some unquantified extent and that guidance is not 469 
being provided about what to suppose if the PDF is misleading. In this way, probabilistic 470 
representations are kept while their limitations, including potential risks involved in their use, 471 
are recognised. Even if we are willing to accept these limitations, however, implementing P2 472 
is challenging. 473 
 If a PDF is to be the best probabilistic representation of uncertainty achievable, it 474 
cannot merely be a plausible PDF or a consensus PDF (in the sense that it represents what 475 
the community is most confident about). A plausible PDF need not take into account 476 
information about uncertainty included in alternative plausible PDFs. A consensus PDF does 477 
not take into account the uncertainty represented in second-best alternatives. The best 478 
achievable PDF is rather one which somehow takes into account as much of the relevant, 479 
established uncertainty while minimizing the loss of information about uncertainty that results 480 
from insisting on a probabilistic representation. Practically, such a PDF can be developed by 481 
an ensemble of experts that reflect the diversity of the field of knowledge relevant to PDF 482 
variables. Such an ensemble of experts will have to make decisions to exclude information 483 
about uncertainty from PDFs where experts disagree. Arguably, which information to 484 
exclude will depend on what users want the information for and thus on the values of users 485 
[Parker and Winsberg, 2018]. There are various procedures available for eliciting, comparing 486 
and combining the PDFs of experts (see, e.g., O’Hagan [2019]); we focus on qualitative 487 
considerations for assessing whether a PDF captures uncertainty as well as possible. Some 488 



elicitation procedures do encourage this kind of discussion [O’Hagan, 2019]. Further, we 489 
focus on the use of expert judgement in combination with model ensembles, to bridge as far 490 
as feasible the gap between a distribution of model outcomes and reality. We spell out steps 491 
in which the appropriateness of PDFs generated in this way might be assessed in accord 492 
with P2. Such expert-based assessments should come with the already noted caveats that 493 
they are uncertain to an unquantified degree and thus are potentially a risky basis for action. 494 
We do not here tackle the difficult question of who counts as a domain expert but note that 495 
the answer is of first-order importance to results. 496 

If model-derived distributions are to be transformed, using expert judgement, into 497 
real-world forecast PDFs, there are two key qualitative questions for assessing the quality of 498 
the model-derived PDFs. The first concerns the construction of the ensemble of models, 499 
which may take one of four forms: 500 
 501 

i. Ad-hoc “ensemble of opportunity”: just the models that happen to be 502 
available. 503 

ii. Structured ensemble resulting from systematic variation of a subset of 504 
parameters of a single model. 505 

iii. Structured ensemble resulting from systematic variation of all parameters of a 506 
single model (keeping in mind that the number of parameters in state-of-the-507 
art climate models makes this unfeasible in their case). 508 

iv. Unstructured ensemble of models resulting from deliberate attempt to 509 
maximise diversity of physical representations/approaches or model 510 
responses. 511 

 512 
We have already noted that PDFs derived directly from ensembles of climate models, 513 

thus including cases (i)-(iv), cannot adequately represent our uncertainty. That said, our 514 
current task is to do the best to represent uncertainty with a PDF, so the question is how we 515 
can do better than merely accepting what the models tell us.  516 
 Case (i) clearly results in model frequencies that do not represent any kind of 517 
systematic sampling. Cases (ii) and (iii) are better in this regard. They are partial and full 518 
sensitivity analyses in model space. (ii) and (iii) come, however, in varying degrees of 519 
adequacy. Sensitivity analyses should explicitly look for nonlinearity or non-robustness to 520 
parameter variation, and highlight it if found, because this provides some indication of the 521 
extent to which the PDF is a realistic representation of current uncertainty rather than an 522 
artefact of relatively unconstrained modeling choices.  523 
 Case (iv) is likely to be more informative than (i)-(iii) due to the deliberate effort to 524 
increase uncertainty ranges. Experimental designs should therefore prioritise the 525 
maximisation of diversity within ensembles.   526 
 The second question, regarding the input of expert judgement, concerns the way in 527 
which the ensemble output is related to the real variable [Thompson and Smith, 2019]. This 528 
expert judgement could take one of the following forms: 529 
 530 

a. We make an expert judgement that the model (ensemble) is perfect: the real world is 531 
statistically indistinguishable from the ensemble distribution. 532 

b. We make an expert judgement that the model (ensemble) is perfect, minus some 533 
empirically-determinable “discrepancy” term or “bias-correction” procedure. 534 



c. We make an expert judgement that the ensemble range probably contains the real-535 
world outcome and the relative model frequency is a qualitative rather than 536 
quantitative guide to the more likely outcomes. 537 

d. We make an expert judgement that the ensemble range contains the real-world 538 
outcome, with some probability. 539 

e. We make an expert judgement that a synthesis of (possibly bias-corrected) ranges 540 
from two or more ensembles contains the real-world outcome, with some probability. 541 

f. We make an expert judgement that the ensemble cannot be interpreted as a 542 
probabilistic guide to the real-world outcome. 543 

 544 
Examples of most of the above strategies can be found in climate literature. For 545 

instance, UKCP18 [Lowe et al., 2018] take approach (b) for projections of UK climate 546 
variables to 2100 and the IPCC’s Working Group 1 [IPCC, 2013; Lee and Marotzke, 2021] 547 
take approaches (d) and (e) for projections of global mean temperature. Under P2, note, the 548 
judgements under (a)-(f) should reflect the diversity of expert opinion in the domain. The 549 
exercises just referred to did not aim explicitly to do so. So too, recall that, under P2, 550 
judgements (a)-(e) are to be acknowledged to be risky to an unquantified degree. IPCC 551 
reports do often take a step towards such acknowledgement by qualifying their confidence in 552 
PDFs, e.g., giving them medium or high confidence, as a function of the quality of supporting 553 
evidence. This gives the misleading impression that we can quantify how confident we 554 
should be in the PDF, contrary to our arguments earlier in this section.   555 

There is (e.g., Bamber and Aspinall [2013]) a second, less widely used, approach to 556 
subjective evaluation of PDF credibility in the climate context, namely using expert elicitation 557 
directly: is a PDF which has been produced by experts using all available evidence credible? 558 
We do not here spell out the steps of using this approach under P2, but note that a directly 559 
elicited PDF will require a clear defence of its characteristics as capturing as far as possible 560 
diversity of opinion among domain experts about the best probabilistic representation of 561 
evidential uncertainty. We further note that PDFs based on this approach must also come 562 
with the caveat that they are uncertain to an unquantified extent. 563 

4. What to do when a PDF won’t do  564 

4.1 Formal treatments of imprecise probabilities 565 

Imprecise probability theory provides us with alternatives to representing uncertainty with a 566 
(partial or full) PDF. Here, sets of PDFs can be used (see Bradley [2019] for an overview). 567 
Using sets of PDFs allows us to represent, without loss of information, a range of expert 568 
opinions about which PDF best captures future uncertainty about climate as well as a range 569 
of model generated distributions. Moreover, there are strategies for mitigating the unwieldy 570 
situation of having to deal with large numbers of PDFs.2 571 

For example, competing studies of climate sensitivity sometimes reflect fundamental 572 
disagreement resulting from reliance on, e.g., different model structures and expert 573 
judgements. To avoid masking the uncertainty associated with such disagreement, Hall et al. 574 
[2007] use a set of PDFs from then available studies to represent uncertainty about climate 575 

 
2 Partial PDFs already depart from probability theory. The point being made in this section is that 
imprecise probability theory provides allows further, useful departures. 



sensitivity. The imprecise probability distribution that results is summarised by an outer 576 
envelope on the cumulative probability distributions of available PDFs. For a given value of 577 
climate sensitivity, the cumulative probability distribution of a PDF gives the probability, 578 
according to that PDF, that climate sensitivity will be equal to, or lower than, the value. 579 

Such approaches, however, still leave untouched the question whether available 580 
PDFs span the range of possible distributions which are compatible with our knowledge. 581 
Consider, for example, the ensembles of opportunity provided by state-of-the-art climate 582 
models. We have observed that they do not fully explore the space of possible evolutions of 583 
the climate system that are compatible with our knowledge and thus that we should not 584 
interpret their output as a real-world PDF, or even as capturing evidential uncertainty. 585 
However, for the same reason, these models are not, in their current form, suitable for 586 
generating sets of PDFs that might represent our uncertainty about quantities of interest, or 587 
even for producing lower and upper probability bounds. Insisting on imprecise probabilities 588 
here leads us to an option that is similar to P2 and retains the core problems with PDFs, 589 
though with more limited worries regarding the adequacy of exploration of extremes. 590 

The lower computational cost of simpler climate models means that they are better 591 
suited to estimating a broad range of possibilities [Katzav and Parker, 2015]. We cannot, 592 
however, straightforwardly use the results of studies with such models to create appropriate 593 
PDFs or collections of PDFs for the reasons described in 3 above. For such models, the 594 
problems of determining the range of appropriate structures to be used in trying to represent 595 
uncertainty are exacerbated by the particularly limited grounding of models in physical theory 596 
[Katzav and Parker, 2015; Baumberger et al., 2018]. One could again choose something like 597 
option P2 and provide a range of low probabilities, or collections of such, for extremes 598 
produced by these studies. But doing this will reflect somewhat arbitrary decisions. Further, 599 
a better framing of our uncertainty in such cases seems to be that certain extremes may turn 600 
out to be possibilities that should be taken seriously in decision making. This framing is 601 
neutral about the probability of the extremes and thus, unlike an assignment of ranges of low 602 
probabilities, does not ignore the possibility that the extremes will turn out to be as serious 603 
as any other possibilities already acknowledged to be serious. 604 

Thus, for example, simple models have suggested that Antarctica might contribute 605 
more than a meter of sea-level rise by the year 2100 (see, e.g., DeConto and Pollard [2016]) 606 
but there has been some discussion about how seriously to take these possibilities (see, 607 
e.g., Clerc et al. [2019] and Pattyn and Morlighem [2020]). It seems reasonable just to 608 
acknowledge that it is unclear whether these possibilities are serious rather than to assign 609 
them a range of low probabilities and not explicitly to acknowledge that they might turn out to 610 
be as serious as any others. 611 

4.2 Formal possibilistic approaches 612 

Possibilistic representations of uncertainty represent uncertainty with possibility distribution 613 
functions rather than PDFs. Possibilities come in degrees, like probabilities. But possibilities 614 
are not additive, unlike probabilities. If for example two events are fully possible, their 615 
disjunction is so too, no more and no less than the individual events. Quantitative possibility 616 
distributions assign to each state in a set of states a number from the real interval [0,1], 617 
where 0 stands for impossibility and 1 for full possibility. Further, at least one state is 618 
assigned the value 1. We can define the possibility measure for any set of states A on which 619 
a possibility distribution π(x) is defined as 𝛱𝛱(𝐴𝐴)  = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥∈𝐴𝐴) 𝜋𝜋(𝑥𝑥).𝛱𝛱(𝐴𝐴) gives us the degree to 620 



which A is possible (see Dubois and Prade [2015] and Halpern [2017] for more on possibility 621 
theory). 622 

Presenting a range of model outputs without committing to how uncertain the output 623 
is, as was done, for example, in the 2002 United Kingdom climate projections [Hulme et al., 624 
2002], differs from presenting a possibility distribution. When presenting a possibility as a full 625 
possibility, one is committed to taking it seriously in decision making [Betz, 2016]. When a 626 
possibility is not yet a full possibility, one is indicating that it is unclear whether it is to be 627 
taken seriously in this way. Roughly, when the understanding on which we base a claim that 628 
something is a possibility is more realistic, the closer the possibility is to being full. 629 

An advantage of using quantitative possibilistic representations of uncertainty over 630 
imprecise probabilities is that possibilistic representations more felicitously represent cases 631 
in which, as with the possibility of extreme sea-level rise, it is not clear how serious the 632 
possibilities are. 633 

For example, in estimating uncertainty about sea level rise by the end of the century, 634 
Le Cozannet et al. [2017] take the AR5 IPCC assessment that it is at least likely (66%) that, 635 
under RCP8.5, sea level rise will be between 0.52 to 0.98 meters by 2100 and transform it 636 
into the possibilistic assessment that it is fully possible that sea-level rise will be within this 637 
range. They assign less than full possibility to values lower than 0.52 and higher than 0.98 638 
meters and take the full range of projections to be given by lower and upper bounds of 639 
available estimates, including the IPCC scenarios and other estimates of more extreme 640 
levels of sea-level rise. Notice that, in this way, Le Cozannet et al. assume that state-of-the 641 
art climate models, which were key to deriving the IPCC AR5’s conclusion, contribute to 642 
estimating our uncertainty but avoid making the mistake of taking agreement or 643 
disagreement between such models to contribute to estimating the likelihood of the range of 644 
projections or the full range of possibilities.3 645 

Qualitative possibilities are defined using partially or totally ordered ordinal scales 646 
[Dubois and Prade, 2015]. Representing uncertainty about different sources of evidence 647 
using an ordinal scale allows being neutral about how to compare the uncertainties (e.g., the 648 
outputs from different models or different studies can be represented as possibilities without 649 
deciding whether the outputs are equally good or not, or by preferring one but to an 650 
unquantified degree). Qualitative possibilities have not, as far as we know, been used in the 651 
climate context. 652 

4.3 What to do when what is possible is unknown 653 

The formal possibilistic assessments discussed above also have their limitations. Thus, for 654 
example, a key aspect of the evolution of our uncertainty about climate is that the space of 655 
(partial and full) possibilities itself evolves. While extreme levels of sea-level rise might not 656 
have been considered as partial possibilities in the past, they are so now. It is thus important 657 
to consider and develop formal and informal approaches to handling such situations in the 658 
context of climate projections. This includes informal approaches which guide us through 659 
articulating decision-relevant possibilities, while noting where such possibilities might not be 660 

 
3 Quantitative possibility measures can be interpreted as upper probabilities, which are tools of 
imprecise probability theory. This allows interpreting possibilistic representations using the tools of 
imprecise probability, though plausibly with a loss of information about uncertainty [Dubois and Prade 
1993 and 2015]. 



known, and in reasoning about these possibilities.4 Further, where the space of possibilities 661 
is only partially known, it is often important to invest in attempts to determine the bounds on 662 
the range of possibilities that are, for better or for worse, to be taken seriously (specifying 663 
non-discountable envelopes). This information could be particularly valuable for risk-averse 664 
decision makers [Hinkel et al., 2019].  665 

The “storyline” approach complements the possibilistic exploration of extremes. 666 
Within the storyline approach, theoretical and expert knowledge is first used to build pictures 667 
of highly uncertain futures; for instance a scenario for greenhouse gas emissions might be 668 
combined with climate or earth system sensitivities which are outside the range simulated by 669 
today’s state-of-the-art models. These pictures can then be filled in with details from high 670 
resolution, weather-model simulations. Informal tools for articulating serious possibilities can, 671 
in principle, be used to guide interpreting resulting scenarios in possibilistic terms (for more 672 
on storylines, see Risbey et al. [2002] and Shepherd et al. [2018]). 673 

5. Conclusions 674 

We have seen that PDFs can misrepresent uncertainty and that this might have negative 675 
consequences for decision-making. Further, while the reliability of a PDF in the case of 676 
weather can empirically be evaluated by repeated, quantitative testing against out-of-sample 677 
data, this is generally not possible in the climate context. Extremely well confirmed theory 678 
could in principle compensate here, by indicating what uncertainty to associate with climate 679 
projections, but theory of climate is not sufficiently developed to do so. In such 680 
circumstances, PDFs about future climate will be unreliable to an unquantified extent. It, 681 
accordingly, seems reasonable to go for what we called perspective P1, which is that PDFs 682 
should be used only when evaluated quantitatively or with extremely well confirmed theory, 683 
and to avoid using PDFs in representations of our uncertainty about future climate. We also, 684 
however, provided a second alternative, P2. On this alternative, PDFs are to be offered 685 
when these reflect a best attempt at capturing domain expert uncertainty and while 686 
acknowledging that they are uncertain to an unquantified extent. 687 

The IPCC takes steps towards P2 in, for example, transforming model-output for 688 
global temperatures over the rest of the century into likely or very likely ranges of projections 689 
using expert judgement, a step to which we have referred above. The IPCC approach, 690 
however, does not explicitly acknowledge that resulting PDFs are uncertain to an 691 
unquantified extent. The IPCC approach also focuses on consensus PDFs while our 692 
proposal is that PDFs that better reflect the breadth of domain expert opinion be provided. 693 
More generally, we have argued that P2 is challenging to implement. 694 

Alternative P1 does not leave us without actionable information or without more 695 
adequate means of representing uncertainty. Formal treatments of imprecise probabilities 696 
include methods for presenting multiple PDFs simultaneously, but although they clarify the 697 
disagreement between models and/or experts rather than seeking to condense it into a 698 
single projection, they are less than ideal for representing the full range of uncertainty, 699 
including cases where it is unclear what the full possibilities are.   700 

Formal possibilistic approaches are available for wider use in climate science and 701 
take another step towards quantifying “deep uncertainty” by representing the range of partial 702 

 
4 See Betz [2016] and the references therein for a general discussion of informal approaches. See 
Heifetz et al. [2006] for an example of a formal system for representing an evolving possibility space 
in the context of economics. 



and fully possible outcomes. Informal, non-probabilistic approaches to assessing uncertainty 703 
are also available. We note that the possibilities in the envelope of possibilities provided in 704 
the very likely range of IPCC temperature ranges [Lee and Marotzke, 2021] are all serious 705 
and thus should not be ignored in decision making. This claim, further, is not subject to the 706 
worries raised about the appropriate location of probability mass or about where to locate 707 
PDF extremes.  708 

Possibilistic approaches would benefit from discussion of when to take extreme 709 
possibilities seriously and from development in the context of exploring extremes with, for 710 
example, the storyline approach. More broadly, use of non-probabilistic approaches to 711 
represent uncertainty would require more familiarity with these in the climate science 712 
community and a culture that makes explicit disagreement that is masked by consensus 713 
PDFs. Similarly, further work is needed to consider how non-probabilistic approaches are 714 
impacted when considering different spatial scales and different climatic variables. 715 

Accurate representations of genuine levels of uncertainty about future climate 716 
outcomes are very important for decisions about mitigation and adaptation. We have argued 717 
that probability distributions of future climate change do not accurately represent genuine 718 
levels of uncertainty, that they can indeed be misleading. This suggests that other 719 
approaches such as those described above should be explored and implemented and that, 720 
where probabilistic representations are used, caution should be used and warnings 721 
provided.  722 
 723 
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